111_006 PKC ElGamal-Sign

Mid Term Exam (MTE) will be held on 15-th of April at 13:30.

You can use your own computers with installed Octave and my .m files.

Otherwise, you must to install and launch Octave in class computer together with downloaded my .m files on
them.

During the MTE you must solve 2 problems:

1. Diffie-Hellman Key Agreement Protocol - DH KAP.

2. Man-in-the-Middle Attack (MiMA) for Diffie-Hellman Key Agreement Protocol - DH KAP.
The problems are presented in the site:

imimsociety.net

In section 'Cryptography":

Cryptography (imimsociety.net)

Please register to the site and after that you receive 10 Eur virtual money to purchase the problems.
Please purchase the only one problem at a time.

If the solution is successful then you are invited to press the green button [Get reward].

Then 'Knowledge bank' will pay you the sum twice you have paid.

So, if the initial capital was 10 Eur of virtual money and you buy the problem of 2 Eur, then if the solution is
correct your budget will increase up to 12 Eur.

You can solve the problems in imimsociety as many times as you wish to better prepare for MTE.
| advise you to try at first to solve the problem in 'Intellect' section to exercise the brains.

It is named as 'WOLF, GOAT AND CABBAGE TRANSFER ACROSS THE RIVER ALGORITHM'.
< https://imimsociety.net/en/home/15-wolf-goat-and-cabbage-transfer-across-the-river-algorithm.html>

The questions concerning the MTE you can ask at the end of the lectures.

The pictures of problems listed above are the following.

Diffie- Hellman Key Agreement
Protocol - DH KAP
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Allce Ko AermemPratcdd gy, Man-in-the Midie (MIM) attack for

Commen secret hey Ditfie-Heliman Key Agreement Protocol (KAP)
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Cryptography:
Information confidentiality, integrity,
authenticity & person identification

Symmetric Cryptography Asymmetric Cryptography
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Public Key Cryptography - PKC

Asymmetric encryption

Symmetric encryption
E-signature - Public Key Infrastructure - PKI

H-functions, Message digest

HMAC H-Message Authentication Code ~ E-Mmoney, Blockchain
E-voting

Digital Rights Management - DRM (Marlin)
Etc.

Symmetric - Secret Key Encryption - Decryption

y
g_:% ? @ Plaintext r@ cip.:p,:ﬂ ”U Plaintext @ ? %

Sender Encrypt Communication Decrypt Recipient
Channel

Same key is used to encrypt
and decrypt message

Shared Secret Key

Public Key Cryptography - PKC

Principles of Public Key Cryptography
Instead of using single symmetric key shared in advance by the parties for realization of symmetric
cryptography, asymmetric cryptography uses two mathematically related keys named as private key
and public key we denote by PrK and PuK respectively.
PrK is a secret key owned personally by every user of cryptosystem and must be kept secretly. Due
to the great importance of PrK secrecy for information security we labeled it in a red color. PuK is a
non-secret personal key and it is known for every user of cryptosystem and therefore we labeled it by
a green color. The loss of PrK causes a dramatic consequences comparable with those as losing
password or pin code. This means that cryptographic identity of the user is lost. Then, for example, if
user has no copy of PrK he get no access to his bank account. Moreover, his cryptocurrencies are lost
forever. If PrK is got into the wrong hands, e.g. into adversary hands, then it reveals a way to
impersonate the user. Since user’s PUK is known for everybody then adversary knows his key pair
(PrK, Puk) and can forge his Digital Signature, decrypt messages, get access to the data available to
the user (bank account or cryptocurrency account) and etc.
Let function relating key pair (PrK, Puk) be F. Then in most cases of our study (if not declared
opposite) this relation is expressed in the following way:

PuK = F(PrK).

In open cryptography according to Kerchoff principle function F must be known to all users of
cryptosystem while security is achieved by the secrecy of cryptographic keys. To be more precise to
compute PuK using function F it must be defined using some parameters named as public parameters
we denote by PP and color in blue that should be defined at the first step of cryptosystem creation.
Since we will start from the cryptosystems based on discrete exponent function then these public
parameters are

PP =(p, 9).
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Notice that relation represents very important cause and consequence relation we name as the direct
relation: when given PrK we compute Puk.
Let us imagine that for given F we can find the inverse relation to compute PrK when PuK is given.
Abstractly this relation can be represented by the inverse function F-1. Then

PrKk = F(PuK).
In this case the secrecy of PrK is lost with all negative consequences above. To avoid these
undesirable consequences function F must be one-way function — OWF. In this case informally
OWE is defined in the following way:
1. The computation of its direct value PuK when PrK and F in are given is effective.
2. The computation of its inverse value PrK when PuK and F are given is infeasible, meaning that to
find F is infeasible.
The one-wayness of F allow us to relate person with his/her PrK through the Puk. If F is 1-to-1,
then the pair (PrK, Puk) is unique. So PrK could be reckoned as a unique secret parameter
associated with certain person. This person can declare the possession or PrK by sharing his/her Puk
as his public parameter related with PrK and and at the same time not revealing PrK.
So, every user in asymmetric cryptography possesses key pair (PrK, PuK). Therefore, cryptosystems
based on asymmetric cryptography are named as Public Key CryptoSystems (PKCS).
We will consider the same two traditional (canonical) actors in our study, namely Alice and Bob.
Everyone is having the corresponding key pair (PrKa, PuKx) and (PrKg, PuKzg) and are exchanging
with their public keys using open communication channel as indicated in figure below.

Asymmetric - Public Key Cryptography

PrK and PuK are related

Alice PuK = E(Prk)

T Large F is one-way function
! Random Having PuK it is infeasible to find
_ Number_ PrK = F1(Puk)
Key F(x)=a is OWF, if:
Generation 1.1t easy to compute a, when F and x are
Program given.

(r 2.It is infeasible compute x when Fand a
are given.
PrK = x <--randi ==>PuK =a=g*mod p
Public Parameters PP = (p, g)

2ouU Y ~ .
Threaths of insecure PrK generation P 2 i r \ = 20L& bots

A = {022ty xml p P 2% (Pl 2 28kbits

B

Message m<p
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Message m < p

Asymmetric Signing - Verification Asymmetric Encryption - Decryption
Sign(PrKa, h) =G =(r, s) c=Enc(Puk,, m)
V=Ver(Puks, h, G), Ve{True, False} = {1,0}  M=Dec(PrKy, c)

Alice Bob
PrKa=x
::'L" —»{ Sign ]A/h :ﬁ'c':! —»| Encrypt ¢
Alice's Alice's
h private key m + public key
h<p m<p |BEB6957 E}CE
08EO3CE4 5 D
Bob Alice
@ PrKa=x
Hello H S ’ " Hello /o-'
Verify -+ Decrypt
Bob , 1 Alice's Alice! b Alice's
public key private key

ElGamal Cryptosystem

1.Public Parameters generation PP = (p, g).
Generate strong prime number p: >> p=genstrongprime(28) % strong prime of 28 bit length
Find a generator g in Z,*={1, 2, 3, ..., p-1} using condition.

Strong prime p=2g+1, where q is prime, then g is a generator of Zp* . 5> 2A28-1
g7+ 1 mod p and g%+ 1 mod p. ans = 2.6844e+08
Declare Public Parameters to the network PP =(p, g); p=268435019; 0=2; . int64(2728-1)

2/28-1= 268,435,455 ans = 268435455
PrK = x <--randi ==>PuK =a =g*mod p

p=a1: 2& pwfA1=5
Compatibility relations of modular arithmetic: O
(a+b)mod p=(amod p+bmod p) mod p. /_‘Zj 3
(a * b) mod p =((a mod p) * (b mod p)) mod p. 5

a” mod p = (a mod p)” mod p.
Fermat little theorem: If p is prime, then for any integer a holds a” = a mod p.

1. We may assume thataisintherange0<a<p - 1.

This is a simple consequence of the laws of modular arithmetic; we are simply saying that we may first
reduce a modulo p since

a’” mod p = (a mod p)” mod p.

2. It suffices to prove that foraintherange1<a<p - 1.

Indeed, if the previous assertion holds for such a, multiplying both sides by a yields the original form of the
theorem.
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a’'=1modp =a’=1modp.

aP: ﬁmﬂdP /@#W/’VJ[D Ompd[f?%):ﬂ
b gt - ‘

a2 :MW&”P o p—< L.Q;:L

oF Z s modp = o= [

O expoven? s Lo waleni? fo( p-4) caporew? T p-4 Sod /fﬂ,j) —p

5 = Xh+¢ ‘,
25 VMOP/P — gﬂﬂ-&pmwﬂip :2{({‘”*—1) W’Vj/ﬂgf;/‘é?
s =G ) nwd (p-0)

El-Gamal E-Signature

The ElIGamal signature scheme is a digital signature scheme which is based on the difficulty of d/g (%1) = //j?[a)
computing discrete logarithms.

It was described by Taher EIGamal in 1984. The EIGamal signature algorithm is rarely used in practice. X Ogég % = ng (ﬁ>
A variant developed at NSA and known as the Digital Signature Algorithm is much more widely used. N Clwg (a)
The ElGamal signature scheme allows a third-party to confirm the authenticity of a message sent

over an insecure channel.

>

EC Gomal 540, —= Dgﬁz@/ %iwyz/ﬂrz Az, (PSA) NSA
ff&/ﬁé tarve DSA — £ CDSA Certicom

Signature creation for message M >> p.

b —{ sign «Oﬂ:'x

Al 1. Compute decjmgl h-value _h:H(M); h<p. '
private key 2. Generate >> i =int64(randi(p-1)) % such that gcd(i,p-1)=1.
3. Compute it mod (p-1). You can use the function
>>i_mi=mulinv(i, p-1); % mod (L xe_md, p-1) =4
4. Compute r=g'mod p. L Y
5. Compute s=(h-xr)i-tmod (p-1). L
6. Signature on h-value h is 6 = (r,s) 4 (p ,15 =1
Sign(x,h) =6 = (r,s).

Sob ﬁm Alice's ,( IE

public key

SSmxr = nod (- xxry p-t)
> > mod (x*t—m.ﬂf,/o—i}:@
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Transaction

>> p=int64(genstrongprime(28)) >> i=randi(p-1)

i=1.1728e+08
>> p= int64(268435019) >> i=int64(randi(p-1)) [ gastimit | [ gasPrice |
p = 268435019 i=47250243
>>g=2 >> ged(i,p-1) I to [[ vaue |
g=2 ans=1

>>i_mil=mulinv(i,p-1) Problem | v | r | s |
i_ml=172715821

>>mod(i*i_m1,p-1)

o \/\

Tk = nowce || gaslindit || gepFeicell %o || vabue || daiz
h:H(‘/}) ﬁr(rps)-:%dﬁw(ﬁﬁk,h)

1.Signature creation
To sign any finite message M the signer performs the following steps using public parametres PP.

Compute h:H(M).
Choose arandom i suchthatl <i<p—1andgcd(i,p—1) =1.
Compute it mod (p-1): it mod (p-1) exists if gcd(i, p — 1) = 1, i.e. i and p-1 are relatively prime.

k' can be found using either Extended Euclidean algorithmt or Euler theorem or .....

>> i _ml=mulinv(i,p-1) % i*mod (p-1) computation.

Compute r:g‘ mod p
compute S=(N-xr)i*t mod (p-1) --> h=xr+is mod (p-1)

. —4
Signature6:(l’, S) 5= (h=sxor)ei /i
56 = (- o) 2507 oot
W=yt =5, h = X.t+ /-<

2.Signature Verification
A signature 6:(r, S) on message M is verified using Public Parameters PP=(p, g) and PuKa=a.

1. Bob computes h:H(M).
2. Bob verifies if 1<r<p-1 and 1<s<p-1.

3. Bob calculates V1=g"mod p and V2=a"rs mod p, and verifies it V1=V2.

The verifier Bob accepts a signature if all conditions are satisfied during the signature creation
and rejects it otherwise.

3.Correctness

The algorithm is correct in the sense that a signature generated with the signing algorithm will
always be accepted by the verifier.

The signature generation implies

h=xr+is mod (p-1)

Hence Fermat's little theorem implies that all operations in the exponent are computed mod (p-1)
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>> p= int64(268435019)
p = 268435019
>>g=2;

>> x =int64(randi(p-1))
X =65770603
>>a=mod_exp(g,x,p)
a=232311991

>> M="'Hello Bob...'

M = Hello Bob...

>> h=hd28(M)

h =150954921

Asymmetric Encryption-Decryption:

>> i =int64(randi(p-1))
i=201156232

>> ged(i,p-1)

ans =2

>> i =int64(randi(p-1))
i=35395315

>> ged(i,p-1)

ans=1
>>i_ml=mulinv(i,p-1)
i_m1=192754179

>> mod(i*i_m1,p-1)
ans=1

>> r=mod_exp(g,i,p)
r=172536234

>> hmxr=mod(h-x*r,p-1)
hmxr = 20262153
>>s=mod(hmxr*i_m1,p-1)
s =44575091

>>g_h=mod_exp(g,h,p)
g_h = 241198023
>>V1=g h
V1=241198023

>>a_r=mod_exp(a,r,p)
a_r=49998673
>>r_s=mod_exp(r,s,p)
r_ s=111993804
>>V2=mod(a_r*r_s,p)
V2 =241198023

El-Gamal Encryption-Decryption

p=268435019; 0=2;

Let message m~ needs to be encrypted, then it must be encoded in decimal number m: 1< m < p.
E.g. m=111222. Then m mod p = m.

ﬁ«' Ky, = a Bf

i M v eerZ‘

m 2o fl:  m <P
ISR — r.a,wdi CQ};)

E = m‘a Q‘ mpﬁ'/) \7% . 1< e ’éﬂﬂ’éﬁ/ﬁ?
D=2 wod p C=(ED) whing her Wll= X,

(- XVmod (p-¢) =0 -x)mod (P-1)= |* D’x’fid(P‘i)madP
=(p~1= x) mod (p=1) 2 E-D pmadp =m

@_L> wiod (p-1) =0\ sivice ”lg:f Lg—’i—
(- #) mvd[/%i):(p«;(«)()

5 ot -9 = D (1)

>> D my = mﬂd,@(f@)) p-1—x, p-1)

C:CE,D) e

D® mod p computation using Fermat theorem:
If p is prime, then for any integer a holds a?? = 1 mod p.
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D™ mod p computation using Fermat theorem:
If p is prime, then for any integer a holds a? = 1 mod p.

/ —X mod (p—1)

D= IW'W/P 10
pri-x_ X

D*M« > f]_’D VwodP — D D wmadp

D* wod P = e wipd P

(gtrrecTness ' '
Enc(PMKA:Q,Z /)’))—‘—‘C:(E D):(E:M%OIL"”“/P;D:QLLMMP)

7ec(PFKA—X,C> =F£-D 1/1/100/,0, yy)a(g) wod p =

X - o
*m(gl) g = g gL g Hdp=m.g ot
= M4 mod P= w wad P= v = 411222
Since W7 £ P
4 m>p — Mwodp £ 27 mods =2+ 2F. gi;iﬁé% per dhar;
4§ mep —~ wmmodp = wo 19 wiod 24 = 72, - =256 char:

fl)eﬂry/ﬁ‘ﬂw 1 corpe 4‘7[ wr < P,

EClaynal W&/’Vpﬁ(ﬂﬂ is probabitistic: encryption p% 222
same messagem)o times idels e p%zzmof cophertents

D-wd énéry/ﬁ’m

{ = rmndi ()
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Necessity of probabilistic encryption.
Encrypting the same message with textbook RSA always yields the same ciphertext, and so we
actually obtain that any deterministic scheme must be insecure for multiple encryptions.

Tavern episode
Enigma

Authenticated Key Agreement Protocol using EIGamal Encryption and Signature.
Hybrid encryption for a large files combining asymmetric and symmetric encryption method.

Hybrid encryption. Let M be a large finite length file, e.g. of gigabytes length.
Then to encrypt this file using asymmetric encryption is extremely ineffective since we must split it into millions of

parts having 2048 bit length and encrypt every part separately.
The solution can be found by using asymmetric encryption together with symmetric encryption, say AES-128.

It is named as hybrid encryption method.
For this purpose the Key Agreement Protocol (KAP) using asymmetric encryption for the same symmetric secret
key k agreement must be realized and encryption of M realized by symmetric encryption method, say AES-128.

AKAP: Asym.Enc & Digital Sign.

How +o Wory/'z/f W% M %JZZ M: Hy/rpﬂﬂ’ ens — .r;i//; W%MQ/

j Pooties nist aftes o coprnromn é(ymwfm'c cocrel key k.

Lo o symmetie Qlock cphet, t.§. AES-725,172 256 &,

T BKy= X5 Puky=ar, B Alg=Y; Akp= b
Puka=b, Pulia = a,

Db = panets (2775

Enc(Rilp=b,¢, , k)=c=(ED) 1.4, 1’07/’({% 7‘ FulC, and Gty are valid 2

2. Vozedy o 6 on h=H s valid 7
2 M- W%W&z‘ab&mékypﬁd . ‘ﬁQh‘(’:i’é‘(j) o (g) s ¢

— =
Ek(M):AE§&KM> - [: szMkA VZV(PMMA,G> %‘>:Tf—wé
D) Signs cipheext C Y2 e, ) = 4

50 h=H(C) 3.0, ()= AES,(¢) =M.
3.2 6@/}(%&%:)() (r;):é\’: (r,s)

A ws wsing 50 called entrpt - apd- sz (E-6-9) preaction.
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Q:’—&—S)/wm%;ﬁm is recomepded fo prevent <o callod
Choosen Cephertext Attacks — CCA: it is wost strong alta, k
4t nmpst mw/jfex L reald zer Fiom.
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